

Fermions can not have mass!

Parity Violator!

Standard Model Parameters

Parameters experimentally determined. Couplings to gauge bosons: gs, e, sin_W -> 3 Parameters 2Boson & 6Quark & 3Lepton Masses -> 11 Parameters

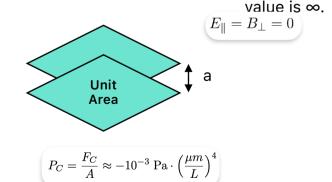
18 free Standard Model Parameters +8 mass of neutrinos and PMNS parameters

TOTAL 26 parameters Standard Model can be described.

Momentum density

Dirac Field

 $\mathcal{L}_D = \bar{\psi} i \gamma^\mu \partial_\mu \psi - m \bar{\psi} \psi$


$$\pi = \frac{\partial \mathcal{L}_D}{\partial \dot{\psi}} = \bar{\psi} i \gamma^0 = i \psi^{\dagger}$$

Hamiltonian Density:

 $\mathcal{H}_D = \pi \dot{\psi} - \mathcal{L}_D = -\bar{\psi} i \vec{\gamma} \cdot \vec{\nabla} \psi + m \bar{\psi} \psi$

Casimir effect Attractive force between conducting infinite uncharged metal plates separated by a

distance "a". About 1 nm = 1 atm pressure. For a finite volume vacuum expectation

there is some freedom but it's not observable.

Gauge Symmetry tells us formalism is redundant, it contains more in the equations,

Muon Pair Production (Theory) muon (µ+) Kinematics: [high-relativistic particles] $k, ec{p_i}$ positron $\frac{d\sigma}{d\Omega} = \frac{1}{32\pi^2} \cdot \frac{1}{s} \cdot \frac{1}{s^2}$ muon (μ⁻) $=\frac{e^4}{64\pi^2}\cdot\frac{1}{s}\cdot(1+\cos^2\theta)$ $p', -\vec{p}_f$ $s = (k + k')^2 = 4E_i^2$ $t = (k - p)^2 \approx -2kp \approx -2E_i^2(1 - \cos \theta^*)$ $\approx -\frac{s}{2}(1+\cos\theta)$ $\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} \cdot (1 + \cos^2 \theta)$ $u = (k - p')^{2} \approx -2kp' \approx -2E_{i}^{2}(1 - \cos \theta)$

Standard Model

Electroweak Interactions Measurement of the "α" Hyper-charge is the average charge of the weak isospin doublet. Since 2019 Physical Constants has been changed.

Weak Hypercharge $\rightarrow Y = Q - I_3$ for weak isospin doublet $I_w =$ for singlet $I_w = 0$

The weak isospin doublets

 $\begin{pmatrix} u_L \end{pmatrix} \begin{pmatrix} c_L \end{pmatrix} \begin{pmatrix} t_L \end{pmatrix}$ Turn each other with **W** interactions.

 $\mathcal{L}_{EW} = -\frac{1}{4}G_j^{\mu\nu}G_{j\mu\nu} - \frac{1}{4}B^{\mu\nu}B_{\mu\nu} + i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + igW_{\mu}T + ig'B_{\mu}Y)\psi$

V-A Structure Dirac Spinor is a 4-component wave function. Each

component satisfies the Dirac and Klein Gordon equation These components different than zero for particles at rest Particles $\psi = [\psi_1, \psi_2, \psi_3, \psi_4]^T$ Anti-particles **Chiral Projection Operators:**

Any spinor can be expressed as:

 $\Psi = P_R \Psi + P_L \Psi = \Psi_R + \Psi_L$

U(1)-> Conservation of Electric Charge

(Electromagnetic Interaction) Photon, e-, n, p + charged particles SU(2)-> Weak Nuclear Force

(Weak interaction) g, quarks, W, Z, mesons, neutrinos

SU(2) L x <u>U(1)</u> Y

 $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\mathcal{D}\psi$

 $F_{\mu\nu}F^{\mu\nu} = G_{\mu\nu}G^{\mu\nu} + W_{\mu\nu}W^{\mu\nu} + B_{\mu\nu}B^{\mu\nu}$

The Higgs Mechanism

 $\alpha = -$

Quantum Hall Effect:

Electron g-factor:

 $a = \frac{\omega_s - \omega_c}{\omega_s - \omega_c}$

 ω_c

 $lpha_{QED}(\mu) = rac{lpha(m_e)}{1 - rac{2lpha(m_e)}{3\pi} \ln\left(rac{\mu}{m_e}
ight)}$

 $R_k = \frac{h}{e^2} = \frac{\mu_0 c}{2\alpha_{QED}}$

 $\vec{\mu} = g_e \frac{e}{2mc} \vec{L} \qquad g_e = 2$

Cyclotron

 $F = m\omega^2 r = evB = e\omega rB$

 $\omega_c = \frac{e}{m}B = \omega_s \quad a = \frac{\omega_s - \omega_c}{\omega_c}$

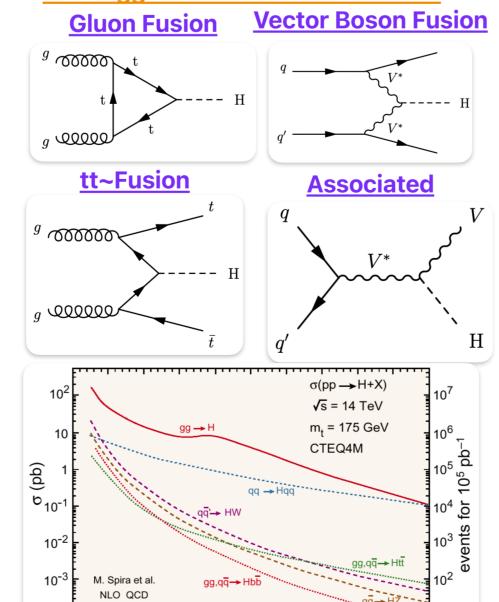
Cyclotron Frequency = Larmor Frequenc

 $4\pi\epsilon_0\hbar\epsilon$

Measurable!

Strong Weak Electromagnet SU(3) C X SU(2) L X U(1) Y 8 type of gluons Weak Isospin Hypercharge Color charge W+,W-,Z Photon

Sources of CP Violation

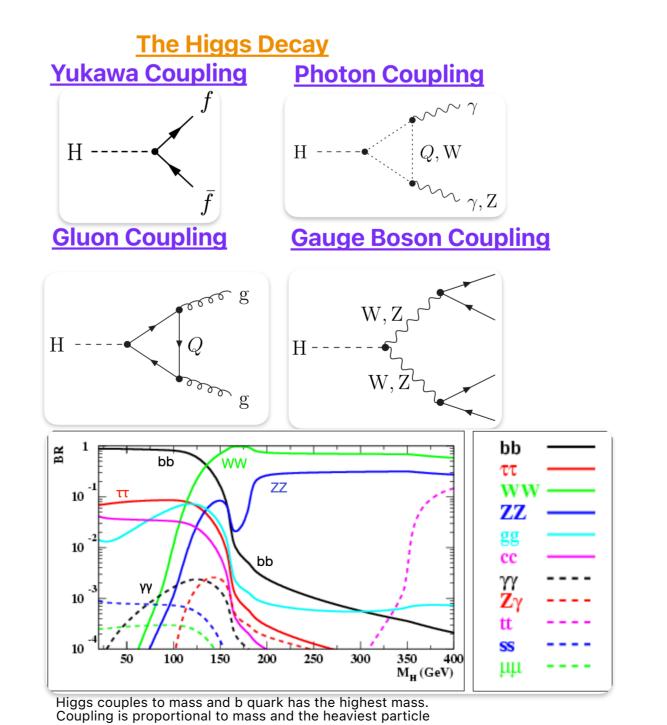

1. Complex CKM matrix, for neutrinos PMNS matrix 2. QCD Strong Interaction CP Violation problem(?) 3. Complex Phases in Higgs Potential

$V(\phi) = -\mu^2 |\phi^{\dagger}\phi| + \lambda |\phi^{\dagger}\phi|^2$ · Standard Model has only dimensionless couplings.

The Higgs Production Mechanisms

 $\mathcal{L}_{Yuk} = c_f(\bar{\psi}_L \psi_R \phi + \bar{\psi}_R \psi_L \phi)$

 $\mathcal{L}_{\phi} = (\partial_{\mu}\phi^{\dagger})(\partial^{\mu}\phi) - V(\phi) \left[D_{\mu} = \partial_{\mu} + ieA_{\mu} \right]$


600

800

200

400

M_H (GeV)

Higgs decay into b bbar.

Renormalization Photon emitted and absorbed instantaneously Superficial degree of divergence Finite degree of divergences can be absorbed in redefinitions of coupling constants and masses. Parton->Coloured Quarks + Gluons Advantages of using rapidity instead of the scattering angle: Rapidity is boost invariant Scaling Violations arises from assumption of quark dominated proton structure. F(x,Q^2) :x↑ Probability of transmission depends on the weak mixing angle, Energy difference that contains the mass difference

Measurement of the Cross-section

e+e- Scattering

 $M_{fi} = \bar{\nu}_e \gamma_\mu u_e \left(-\frac{e^2}{q^2} \right) \bar{\nu}_\mu \gamma^\mu u_\mu$

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{s \cdot 64\pi^2} \frac{|\vec{p_f}|}{|\vec{p_i}|} \overline{|M_{fi}|^2}$

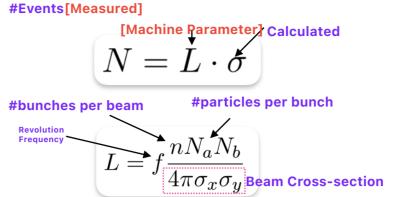
Kinematics: [high-relativistic particles]

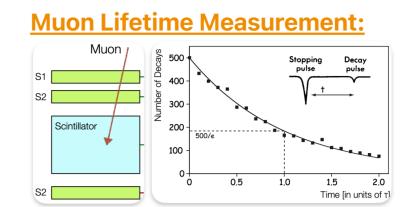
muon (μ⁻)

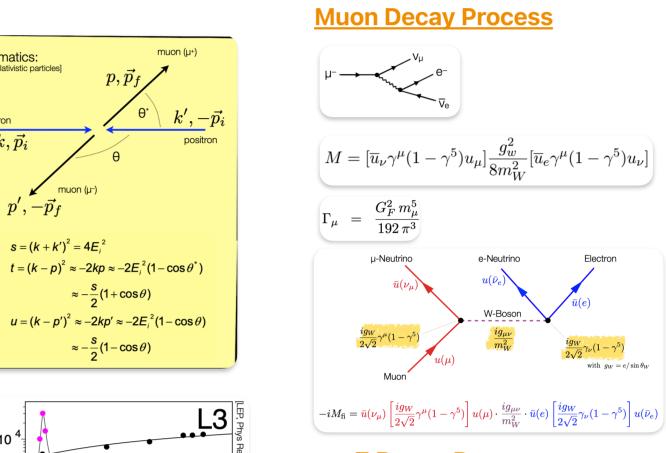
 $\approx -\frac{s}{2}(1+\cos\theta)$

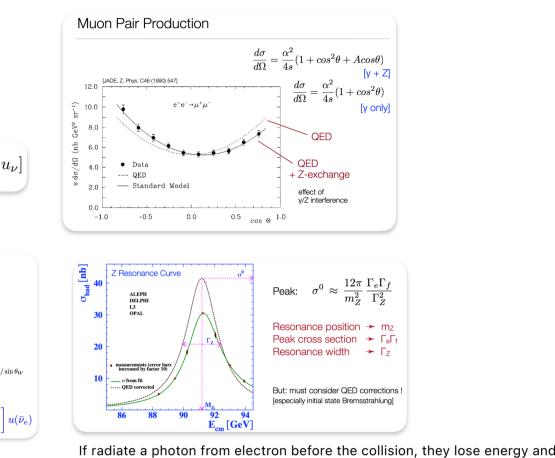
 $\approx -\frac{s}{2}(1-\cos\theta)$

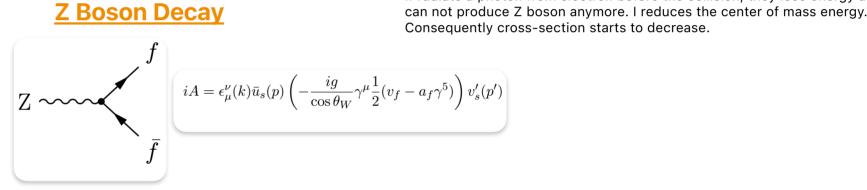
• e⁺e⁻→e⁺e⁻qq | g


• e⁺e⁻→μ⁺μ⁻(γ) | ξ


e⁺e⁻→qq(γ)


 $s = (k + k')^2 = 4E_i^2$


e⁺e⁻→W⁺W⁻


• e⁺e⁻→W⁺W⁻γ

Lepton Universality: All leptons have same gv-ga universal couplings